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Introduction  
 
Both clinical data and gene expression data have demonstrated that there is more than just one 
type of breast cancer.  Gene expression data identified five subtypes of breast cancer: the 
estrogen receptor positive Luminal A and B, HER2+, normal-like and the basal-like (1).  The 
basal-like subtype, which accounts for 10-15% of tumors, is negative for both the estrogen 
receptor and HER2 and is therefore not a candidate for hormonal therapy or trastuzumab.  Most 
of the work in understanding chemotherapeutic sensitivity has been accomplished with the 
luminal subtypes, which are more prevalent and have better outcomes. This prompted the work, 
demonstrated here, to identify chemotherapeutics with increased sensitivity and identify 
biologics that specifically target markers of the basal-like subtype.  One candidate is the 
HER1/EGF receptor, which is highly expressed in about 50% of breast cancers (2).  Many 
inhibitors to this receptor are available and are in use in a variety of other cancers, decreasing the 
potential time to clinical use.  This work describes the identification of a potential targeted 
chemotherapy and the evaluation of the EGFR signaling pathway in the breast cancer subtypes. 
 
Body  
 
Task 1:  Identify differences in toxicant sensitivity and gene expression profiles between basal 
and luminal breast derived cell lines treated with a diverse set of toxicants. 
 
As stated in the April 2006 Annual Summary, comparison of our breast cell lines to a panel of 
chemotherapeutic agents identified the two basal-like tumor derived cell lines as slightly more 
resistant to 5-fluorouracil and more sensitive to carboplatin compared to the HMEC and luminal 
cell lines.  Using Significance Analysis of Microarrays, I compared the two tumor-derived basal 
lines treated with carboplatin with the normal HMEC basal-like lines treated with carboplatin.  
There were many dynamic changes in gene expression in the HMEC lines while the SUM lines 
were relatively unchanged for these genes (data not shown). Unfortunately, many of the probes 
were ESTs or hypothetical proteins.  Gene Ontology analysis did not identify any significant 
functional groups of genes that were enriched in the gene list.  The expression patterns, while not 
identifiable at the current stage, may have resulted from the SUM lines inability to fix the 
carboplatin-induced damage.  BRCA1 has been demonstrated to be necessary for the recruitment 
of RAD51 to sites of platinum-induced damage (3-5).  The SUM149 line has a mutant BRCA1 
and SUM102 have reduced transcript levels of BRCA1 (6).  BRCA1 mutant phenotypes have 
been associated with predominately the Basal-like phenotype (7-12).  Therefore, carboplatin or 
other platinum drugs could, in essence, behave like a targeted chemotherapy for the treatment of 
basal-like cancers. 
 
Task 2. Evaluate the sensitivity of basal-like and luminal breast cell lines to HER1/EGFR 
inhibitors. 
 
Chemosensitivity to two additional EGFR inhibitors, erlotinib and cetuximab, were evaluated on 
my panel of breast cancer cell lines. While sensitivity in my panel of cell lines was more variable 
to these EGFR inhibitors compared to gefitinib, where the basal-like lines were 2-100 fold more 
sensitive than the luminal lines, all of the cell lines sensitive to these agenets were of the basal-
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like subtype (Table 1).  The SUM102 line was the only cell line sensitive to all three EGFR 
inhibitors and the only one sensitive to cetuximab (dose range 0-100µg/mL).     
 
Microarray analysis was performed to evaluate the EGFR activation signature in the SUM102 
cell line.  Cells were treated for 48h with either gefitinib or cetuximab to inhibit the signaling 
pathway.  Media with inhibitor was replaced with fresh media without inhibitor and time points 
were taken at 4h, 8h, and 24h.  Unsupervised analysis of the data showed that the two inhibitors 
had high similarity in their gene expression alterations (Figure 2).  To view the EGFR activation 
signature on breast tumors, a one class Significance Analysis of Microarrays was used to identify 
the top 500 induced genes from the 4h, 8h, and 24h time points.  These genes were clustered on a 
UNC tumor data set of 248 tumors representing all five intrinsic breast cancer subtypes.  Three 
distinct gene clusters (criteria: >20 genes, Pearson node correlation > 0.55) were observed across 
the tumor data (Figure 3).  The first cluster was high in a mixed tumor group, the second was 
high in mostly basal-like tumors, and the third was high in basal-like, HER2+/ER-, and luminal 
tumors.  These three clusters were evaluated on an independent NKI data set of 295 breast 
tumors.  High expression of each cluster was correlated with poor outcome (Figure 4).  Chi-
square analysis identified correlations of each cluster with subtype (Table 3).  High expression of 
each cluster was associated with most of the tumors of the basal-like subtype and approximately 
half of the HER2+/ER- and luminal B tumors.  While only 50% of basal-like tumors have high 
expression of EGFR protein, greater than 95% of the basal-like subtype had high expression of at 
least one, if not all three, of these clusters indicating a dependence on this pathway for growth. 
 
Since EGFR is not high in all basal-like cells, I examined expression of other genes in the 
pathway and correlated them with both subtype and cluster (Figure 3, Tables 3 and 4).  High 
expression of many of the genes in this pathway was correlated with different subtypes or with 
different clusters.  This really demonstrates that each of the subtypes uses the EGFR signaling 
pathway differently.  More details about the correlations are discussed in the appended 
manuscript.  High expression of many genes downstream of EGFR was associated with the 
basal-like subtype, many of which have been suggested to confer EGFR-independent growth. 
Only about 10% of the basal-like tumors had high expression of EGFR and ligands with low 
expression of these downstream genes, suggesting that direct inhibition of EGFR may not be 
effective in many basal-like tumors.   
 
While looking at gene expression ordered by hierarchical clustering can be informative, I also 
wanted to observe these genes in the sense of a pathway.  I built an EGFR pathway in Cytoscape 
based on several pathway databases and reviews.  The gene expression of each subtype or of 
individual tumors were uploaded and then viewed within the context of the pathway.  Many 
differences were observed across the tumor subtypes showing characteristic differences in how 
each subtype utilizes the pathway (Figure 5).  The luminal A subtype had low expression of the 
pathway while luminal B had higher expression of some of the genes and high expression of 
HRAS was correlated with approximate half of the luminal B tumors.  The HER2+/ER- tumors, 
as expected, had high expression of HER2 as well as other genes including HRAS.  The basal-
like subtype had high expression of most of the genes in the pathway; however, the mechanism 
of pathway activation varied from tumor to tumor (Figure 6).  The treatment options for basal-
like patients will be complex and may require inhibition at multiple different steps. Many of the 
tumors were high for CRYAB, MEK, and the KRAS amplicon all of which signal through the 
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RAS-MEK-ERK pathway.  MEK inhibitors are currently in clinical trials and may be more 
beneficial than the EGFR inhibitors for the basal-like subtype. 
 
Task 3. Test combination therapies of HER1/EGFR inhibitors and a diverse set of toxicants 
 
Previously, I demonstrated combination analysis of the four tumor-derived breast cell lines with 
a single concurrent treatment of gefitinib and chemotherapy.  A basal-like clinical trial in process 
at UNC is examining cetuximab and carboplatin.  Therefore, we examined cetuximab in 
combination with carboplatin as well as doxorubicin, 5-fluorouracil, and paclitaxel in the tumor-
derived basal-like cell line SUM102, the only line sensitive to cetuximab.  Full methods and data 
are included in the appended manuscript.  Many studies have shown that the order of the drugs 
can have various effects on cell growth (13, 14). I evaluated sequence dependent effects of four 
treatments: (1) 72h cetuximab followed by 72h chemotherapy, (2) 72h chemotherapy followed 
by 72h cetuximab, (3) 72h chemotherapy plus cetuximab, and (4) 144h chemotherapy plus 
cetuximab.  In general, chemotherapy first or the 144h concurrent combination were more 
growth inhibitory than the short-term concurrent combination or cetuximab first.  Cetuximab 
combinations with carboplatin were the most growth inhibitory and had the highest levels of 
synergistic interaction between the two drugs for the carboplatin first or the long-term 
concurrent.  This is very promising for the cetuximab clinical trial.  Combinations with 5-
fluorouracil were similar, while combinations with doxorubicin required higher dose levels to 
achieve synergy. Only combinations with paclitaxel were antagonistic at all doses (Figure 1, 
appended manuscript).  However, SUM102 cells were extremely sensitive to paclitaxel as a 
single agent and the addition of cetuximab may appear antagonistic because of the already high 
sensitivity observed (Table 2, appended manuscript). 
 
Key research accomplishments  
 

 Basal-like tumor derived lines are more sensitive to carboplatin 
 Basal-like cells lines are sensitive to gefitinib 
 Combination of carboplatin and gefitinib was synergistic in vitro 
 High expression of EGFR activation signatures is correlated with poor outcomes 
 Basal-like subtype has high expression of genes that may confer EGFR-

independent growth 
 Basal-like subtype has many different mechanism of EGFR pathway activation 

 
Reportable outcomes  
 
 Speaker Abstract Toxicogenomics 2006 Bi-annual Meeting 
 
 Manuscript  EGFR Signaling Varies with Breast Tumor Subtype 
    Submitted to Breast Cancer Research December 2006 
  

Ph.D.   Genetics and Molecular Biology 
    Awarded December 2006   
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Dissertation Development of Biologically Based Therapies for Basal-like 
Breast Tumors  

 
  

 
Conclusions 
 
The breast cancer subtypes have been robustly identified in many different studies regardless of 
differences in demographics of the data set, sample collection, preparation, or platform (1, 11, 
15-17).  Thus, the inherent differences across the subtypes imply that each subtype will require a 
different and possibly unique treatment approach.  In the case of ER+ or HER2+/ER- tumors, 
there are several targeted therapies that have shown high effectiveness in many of the patients 
with these tumors.  However, the basal-like subtype, which has poor outcomes, lacks both of 
these markers and few have examined how they respond to chemotherapies.  The research 
described here specifically examined cells lines and tumors of basal-like origin to identify 
chemotherapy or targeted therapy options for treatment. 
 
The basal-like cell lines were more sensitive to carboplatin compared to the normal HME basal-
like lines and the luminal cell lines.  This may be a result of the low to absent functional BRCA1 
in the SUM lines (6).  Mutant or low BRCA1 is associated with the basal-like phenotype (7-12).  
Since BRCA1 is required for the repair of DNA damage (3-5), platinum-based chemotherapy 
treatments may have an increased benefit for the basal-like subtype.  There are two clinical trials 
– [http://www.clinicaltrials.gov/ct/show/NCT00232505] and 
[http://www.clinicaltrials.gov/ct/show/NCT00248287] – where we will be able to test the benefit 
of carboplatin in basal-like patients.   
 
EGFR protein expression is observed in about 50% of basal-like tumors (2).  Many EGFR 
inhibitors have shown promise in other cancers.  Therefore, EGFR represented a good candidate 
for a targeted therapy for basal-like tumors.  In our cell line model, cell lines that were sensitive 
to any of our three EGFR inhibitors were of basal-like subtype.  I also demonstrated that the 
combination of two EGFR inhibitors, cetuximab and gefitinib, were synergistic with carboplatin 
in combination treatments.   
 
Using microarrays, I identified an EGFR pathway activation signature in hopes of being able to 
identify tumors that may benefit from EGFR inhibitors.  High expression of genes in the 
activation cluster was predictive of poor outcome.  Further analysis identified high expression of 
many genes downstream of EGFR that may confer EGFR-independent activation of the pathway 
were highly correlated with the subtype.  Many of these genes are in the RAS-MEK-ERK 
pathway.  While only 50% of tumors express EGFR protein, up to 95% of the tumors show high 
activation of genes within this pathway.  The basal-like tumors, themselves, were very 
heterogeneous with many different potential EGFR pathway activations.  This data strongly 
supports focusing targeted therapies farther downstream of EGFR such as the newer MEK 
inhibitors.  In the case of the basal-like tumors, multiple inhibitors and chemotherapy 
combinations may be required to effectively treat this subtype. 
 
 

 7



 8

References 
 
1. T. Sørlie et al., Proc Natl Acad Sci U S A 98, 10869-74 (Sep 11, 2001). 
2. T. O. Nielsen et al., Clin Cancer Res 10, 5367-3574 (2004, 2004). 
3. C. Zhou, P. Huang, J. Liu, Biochem Biophys Res Commun 336, 952-60 (Oct 28, 2005). 
4. P. Tassone et al., Br J Cancer 88, 1285-91 (Apr 22, 2003). 
5. J. E. Quinn et al., Cancer Res 63, 6221-8 (Oct 1, 2003). 
6. F. Elstrodt et al., Cancer Res 66, 41-5 (Jan 1, 2006). 
7. J. B. Arnes et al., Clin Cancer Res 11, 4003-11 (Jun 1, 2005). 
8. W. D. Foulkes et al., Cancer Res 64, 830-5 (Feb 1, 2004). 
9. W. D. Foulkes et al., J Natl Cancer Inst 95, 1482-5 (Oct 1, 2003). 
10. C. A. Livasy et al., Mod Pathol 19, 264-71 (Feb, 2006). 
11. T. Sørlie et al., Proc Natl Acad Sci U S A 100, 8418-23 (Jul 8, 2003). 
12. N. C. Turner et al., Oncogene (Oct 2, 2006). 
13. M. P. Morelli et al., Ann Oncol 16 Suppl 4, iv61-iv68 (May, 2005). 
14. J. M. Xu et al., Biochem Pharmacol 66, 551-63 (Aug 15, 2003). 
15. Z. Hu et al., BMC Genomics 7, 96 (2006). 
16. C. M. Perou et al., Nature 406, 747-52 (Aug 17, 2000). 
17. R. Rouzier et al., Clin Cancer Res 11, 5678-85 (Aug 15, 2005). 
 
 
Appendices  
 
 

1. Manuscript: EGFR Signaling Varies with Breast Tumor Subtype (Contains 
Referenced Figures/Tables) 

2. Toxicogenomics 2006 Bi-Annual Meeting Speaker Abstract 
3. CV 

 
 
 



EGFR signaling varies with breast tumor subtype  
 
Katherine A. Hoadley1-3, Victor J. Weigman2-4, Cheng Fan2,3, Lynda R. Sawyer5, Xiaping He2,3, 
Melissa A. Troester6, Carolyn I. Sartor3,7, Thais Rieger-House8, Philip S. Bernard8, Lisa A. 
Carey5, and Charles M. Perou1-3,9,* 

 
1Curriculum in Genetics and Molecular Biology, 2Department of Genetics, 3Lineberger 
Comprehensive Cancer Center, 4Department of Biology, Program of in Bioinformatics and 
Computational Biology, 5Division of Hematology/Oncology, Department of Medicine, 
7Department of Radiation Oncology,  9Department of Pathology & Laboratory Medicine, 
University of North Carolina at Chapel Hill, Chapel Hill, NC 
 
6Department of Public Health - Biostatistics and Epidemiology Concentration, University of 
Massachusetts Amherst, Amherst, MA 
 
8Huntsman Cancer Institute and Department of Pathology, University of Utah School of 
Medicine, Salt Lake City, UT 
 
*Corresponding Author: 
Charles M. Perou 
Lineberger Comprehensive Cancer Center 
CB# 7295 
The University of North Carolina at Chapel Hill 
Chapel Hill, NC 27599-7295 
Email: cperou@med.unc.edu 
Phone: (919) 843-5740 
Fax: (919) 843-5718 
 
Running Title: EGFR signaling in breast cancer 
Keywords: breast cancer, chemotherapy, EGFR, HER1, microarray 
 
All figures and text can be obtained at https://genome.unc.edu/cgi-
bin/SMD/publication/viewPublication.pl?pub_no=62 
 
Author email addresses 
Katherine A. Hoadley: hoadley@med.unc.edu 
Victor J. Weigman: victor@med.unc.edu 
Cheng Fan: cfan2004@gmail.com 
Lisa A. Carey: lisa_carey@med.unc.edu 
Lynda R. Sawyer: lrsawyer@med.unc.edu 
Xiaping He: xiaping@med.unc.edu 
Melissa A.Troester: troester@schoolph.umass.edu 
Carolyn I. Sartor: carolyn_sartor@med.unc.edu 
Thais Rieger-House: thais.riegerhouse@hci.utah.edu 
Philip S. Bernard: phil.bernard@hci.utah.edu 
Charles M. Perou: cperou@med.unc.edu 



Hoadley et al. 

ABSTRACT 

Introduction 

The epidermal growth factor receptor (EGFR/HER1) and its downstream signaling events are 

important for regulating cell growth and behavior in many epithelial tumors including lung and 

colon. In breast cancers, the role of EGFR is complex and may vary with estrogen receptor (ER) 

status.  

Methods 

To investigate the role of EGFR signaling in breast cancer, several breast basal-like and luminal 

epithelial cell lines were examined for sensitivity to the EGFR inhibitors gefitinib and 

cetuximab. We identified an EGFR-activation profile in the basal-like breast cancer cell line 

SUM102 and analyzed expression of these genes in human breast tumors. 

Results 

The breast basal-like cell lines were more sensitive to gefitinib compared to the luminal lines. 

The basal-like cell line SUM102 was the only cell line sensitive to cetuximab. The basal-like 

tumor derived lines were also the most sensitive to carboplatin, which acted synergistically with 

cetuximab. Using SUM102 cells, we identified an EGFR-activation profile that included a strong 

MEK-dependent signature. The EGFR-activation signature was next used to analyze a large 

panel of primary breast tumors. Three distinct clusters of genes were evident in vivo, two of 

which were strongly predictive of poor patient outcomes. These two poor prognostic signatures 

were highly expressed in most basal-like tumors and in approximately half of the HER2+/ER- 

and Luminal B tumors. Ninety percent of the basal-like tumors that showed high expression the 

EGFR-activation profiles also showed high expression of CRYAB and/or a KRAS-amplicon 

signature. 
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Conclusion 

These data suggest that most basal-like tumors have an EGFR-activation profile, however, few 

may respond to the direct inhibition of EGFR due to ligand independent activation of the EGFR-

RAS-MEK pathway via CRYAB or KRAS function. Thus, for those tumors that show a ligand 

independent EGFR-activation profile, alternative strategies that target downstream components 

like MEK may prove to be viable alternatives. 
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Introduction 

The epidermal growth factor receptor (EGFR/HER1) is a member of the human epidermal 

growth factor receptor (HER) family of transmembrane receptor tyrosine kinases that is linked to 

growth control, cell adhesion, mobility, and apoptosis [1]. As such, EGFR is an important 

regulator of epithelial cell biology, but its function in breast tumors may vary according to other 

clinical features like estrogen receptor (ER) status. Microarray studies have identified several 

subtypes of breast cancer arising from at least two different epithelial cell types [2-5]. Two of the 

molecular subtypes of breast cancer are partly defined by the expression of ER, while another is 

partly defined by the genomic DNA amplification and high expression of HER2 (i.e. 

HER2+/ER-, see [5]).  The basal-like subtype has low expression of both ER and HER2, 

however, EGFR was found to be highly expressed in many of the basal-like tumors as assessed 

by both gene and protein expression [6].   

 

EGFR overexpression has been reported in a variety of epithelial tumors [7], leading to the 

development of drugs directed against this receptor [8, 9].  One of these targeting strategies 

employs monoclonal antibodies (cetuximab) that bind the extracellular ligand-binding domain, 

while other strategies include small molecule inhibitors (gefitinib and erlotinib) that compete 

with ATP for binding to the intracellular tyrosine kinase domain [10-12].  In non-small cell lung 

cancer and breast cancer cell lines, it has been shown that some small molecule EGFR inhibitors 

increase cell killing when used in combination with chemotherapeutics [13, 14]; therefore, the 

interactions between EGFR inhibitors and cytotoxic agents represent a promising combination 

for the future treatment of epithelial tumors that are dependent upon EGFR-signaling. 
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The lack of clinical response in breast cancers to gefitinib in vivo has been partially attributed to 

activation of this pathway downstream of EGFR.  Several studies have implicated the PI3K/AKT 

and MEK/ERK pathways as being responsible for EGFR inhibitor resistance. EGFR-independent 

activation of the PI3K/AKT pathway may occur through either loss of PTEN or 

mutation/activation of PI3K, both of which have been linked to gefitinib resistance [15-17]. 

Others have suggested that the MEK/ERK pathway may play a more important role in resistance 

to EGFR inhibitors [18-20]. Recently, Moyano et al. identified αB-Crystallin (CRYAB) as a 

protein that can constitutively activate the MEK/ERK pathway in breast cancer cells and caused 

this cell line to become EGF independent [21].  

 

In this study, we used basal-like breast cell lines to examine the EGFR signaling pathway and its 

interactions with cytotoxic chemotherapeutics. Using an EGFR-activation profile derived from a 

basal-like tumor derived cell line, we determined that most basal-like and approximately 50% of 

Luminal B and HER2+/ER- tumors showed an EGFR-activation profile. EGFR-activation 

signatures may be useful in selecting patients for therapeutics that target the EGFR-RAS-MEK 

pathway.  

 

Material and Methods 

Cell Culture.  SUM102 and SUM149 cells were a gift from Steve Ethier of Wayne State 

University [22] and represent cell lines derived from ER- and HER2- basal-like breast tumors.  

The SUM lines were maintained in an Epithelial Growth Medium developed by the Tissue 

Culture Facility at the University of North Carolina at Chapel Hill [23], and the SUM149 line 
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was further supplemented with 5% FBS. The MCF-7, ZR-75-1, HME-CC and ME16C cell lines 

were obtained and maintained as previously described [24, 25]. 

 

Cytotoxicity Assay.  Cell line sensitivities to drugs were assessed using a mitochondrial dye 

conversion assay (MTT, Cell Titer 96, Promega) as described previously with the following 

modifications [24].  Cells were seeded into triplicate 96-well plates (SUM102, HME-CC, and 

ME16C – 5,000 cells/well, SUM149 – 10,000 cells/well, MCF-7 and ZR-75-1 – 7,000 cells/well) 

and allowed to adhere overnight.  Cells were treated for 72h with a range of doses of individual 

drugs. Carboplatin, doxorubicin, 5-fluorouracil, paclitaxel, and LY294002 were purchased from 

Sigma. Gefitinib was a gift from AstraZeneca and cetuximab was purchased from the UNC 

Hospitals Pharmacy Storeroom. U0126 was purchased from Cell Signaling. The inhibitory 

concentration that caused a 50% reduction in MTT dye conversion (IC50) dose was determined 

as previously described [24]. 

 

Drug combination interactions were analyzed using methods developed by Chou and Talalay 

[26]. Using cell lines plated as described above, seven treatment combinations consisting of 

constant ratios of IC50 doses (ranging from one-eighth of each dose to eight times the IC50) 

were applied to cells and growth compared to untreated controls using the MTT assay. Four 

treatment schedules were tested: 72h concurrent, 72h inhibitor followed by 72h 

chemotherapeutic, 72h chemotherapeutic followed by 72h inhibitor, and a 144h concurrent dose 

with a media change at 72h (similar to the sequential treatments).  CalcuSyn (BioSoft) was used 

to determine the combination index, which is a measurement of the type of drug interactions.  A 

combination index (CI) of one indicates an additive response, less than one indicates a 
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synergistic response (greater than additive), and greater than one indicates an antagonistic 

response (less than additive).   

 

Collection of mRNA for Cell Line Experiments.  For each treatment, the SUM102 cells were 

grown in 15-cm dishes until 50-60% confluence.  SUM102 cells were treated for 48h with a dose 

equivalent to two times the 72h-IC50 dose of each inhibitor (treated samples). To identify EGFR, 

MEK, and PI3K activation signatures, medium was removed after 48h of inhibitor treatment and 

replaced with fresh medium without inhibitor.  mRNA was harvested at 4h, 8h, and 24h (post 

treatment samples).  Cells were harvested by scraping, quickly placed into RNA lysis buffer, and 

mRNA was isolated using the Micro-FastTrack kit (Invitrogen).   

 

Collection of RNA for Human Tumor Samples. 248 breast tissue samples represented by 241 

fresh frozen breast tumor samples and 7 normal breast tissue samples were obtained from four 

different sources using IRB approved protocols from each participating institution: the 

University of North Carolina at Chapel Hill, The University of Utah, Thomas Jefferson 

University and the University of Chicago; many of these samples have appeared in previous 

publications [27-30], and 117 are new to this study (Supplementary Table 1). The patients were 

heterogeneously treated in accordance with the standard of care dictated by their disease stage, 

ER, and HER2 status. 

 

Tumor sequence analysis. Tumor genomic DNA samples were isolated from 96 tumors using 

Qiagen DNeasy Kits according to the manufacturers protocol. Gene resequencing analyses were 

performed at Polymorphic DNA Technologies (Alameda, CA) using an ABI 3730xl DNA 
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sequencer and cycle sequencing, according to the manufacturers protocol. A two-step 

"boost/nested" PCR strategy was used where first a PCR reaction is performed to generate a 

larger DNA fragment, which is then used as a template for the nested reaction with a second set 

of PCR primers.  Double stranded sequencing was performed on the nested product using the 

nested PCR primers as the sequencing primers. Exons 19 and 21 of EGFR were sequenced 

across all 96 patients, while exons 1 and 2 of KRAS2, 1 and 2 of HRAS, and 11 and 15 of BRAF 

were sequenced across 54 patients. No somatic alterations were detected.  

 

Microarray Experiments.  For the human tumor samples, the total RNA isolation and 

microarray protocols were performed as described in Hu et al. [5]; in this study, a number of 

tumor samples from previous studies were retested using a new custom Agilent microarray 

enriched for breast cancer genes. For cell lines experiments, labeled cRNA was generated from 

the mRNA using Agilent’s Low RNA Input Linear Amplification Kit as described in Hu et al. 

[5]. For the cell line studies, the 48h inhibitor treated samples were compared to an untreated cell 

line reference to look for effects of an inhibitor, and for the post treatment samples, to identify an 

activation signature for that drug/pathway. Labeled experimental sample (Cy5 CTP) and 

reference (Cy3 CTP) were mixed and co-hybridized overnight on the same Custom 22K Agilent 

Human Whole Genome Oligonucleotide Microarray described above. Two to four microarrays 

per experimental cell line condition were performed, including a dye-flip replicate for gefitinib- 

and cetuximab-treated samples.  Microarrays were scanned on an Axon GenePix 4000B 

microarray scanner and analyzed using GenePix Pro 5.1 software.  Microarray raw data were 

uploaded into the UNC Microarray Database and Lowess normalization was performed on the 

Cy3 and Cy5 channels. The microarray and patient clinical data are available at UNC Microarray 
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Database [31] and have been deposited in the Gene Expression Omnibus under the accession 

number GSE6128. 

 

Statistical Analyses. Intraclass correlations between cell line microarray experiments were 

performed to judge agreement between experiments as described in Hu et al. [5]. Unsupervised 

analyses of the cell line samples were performed by selecting genes with an absolute signal 

intensity of at least 30 units in both channels in at least 70% of the samples tested and that also 

showed a Log2 R/G Lowess normalized ratio of two on at least two arrays. The program Cluster 

was used to hierarchically cluster samples and genes, and Treeview was used to view the data 

[32, 33]. Using the SUM102 treated cells, a one-class Significance Analysis of Microarrays 

(SAM) was used to identify significantly induced genes in all the post treatment experiments 

(two to three arrays for each experimental time point) [34]. Gene ontology enrichment was 

assessed using EASE [35].  

 

Analyses of the primary tumor data used the top 500 induced genes from the cell line SAM 

analysis described above, after filtering for 30 units in both channels in at least 70% of the tumor 

samples.  These genes were examined in a two-way hierarchical clustering analysis with the 248 

UNC tumor sample set.  Three distinct expression patterns were observed and labeled as Clusters 

#1-3. Next, the genes in each of these three tumor-defined clusters were identified in the NKI295 

patient data set [36, 37], and a mean expression value for each cluster for each patient was 

determined.  The NKI295 patients were then rank-ordered and separated into (a) two equal 

groups representing low and high, or (b) three equal groups representing low, medium, and high 

average expression for each cluster.  In addition, similar gene-based rank order patient 
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stratifications were performed for individual genes that included EGFR, HER2, HER4, EGF, 

TGFA, AREG, CRYAB, KRAS, KRAS-amplicon profile, HRAS, NRAS, PIK3CA, PIK3R1, AKT1, 

AKT2, AKT3, MEK1, MEK2, ERK1, and ERK2.  Survival analyses were performed using Cox-

Mantel log-rank test in Winstat for Excel (R. Fitch Software).  Multivariate Cox proportional 

hazards analysis was performed in SAS v9.0 (SAS Statistical Software, Cary, NC) to estimate 

the hazard ratio associated with cluster expression in the three groups after controlling for 

standard clinical predictors (age, ER status, size, grade, and node status). Chi Square tests (SAS 

v9.0) was used to examine correlations between cluster groups, individual genes, and tumor 

subtype. 

 

Gene expression relative levels were visualized in relation to the EGFR signaling pathway using 

Cytoscape [38, 39]. The pathway was built de novo based on information from KEGG [40, 41], 

BioCarta [42], and a review by Yarden and Silowkoski [1] with a focus on the RAS-MEK and 

PI3K/AKT components.  Using the 248 UNC breast tumor microarray dataset, an average gene 

expression profile is displayed for the Luminal A, Luminal B, basal-like, and HER2+/ER- 

tumors. Tumor “intrinsic” subtype was determined for each sample using the 306 gene Centroid 

Predictor described in Hu et al. [27]; the subtype classifications used for the NKI295 sample set 

were also derived from this same centroid predictor and are described in Fan et al. [43]. 

 

RESULTS 

Cell line models of breast cancer.  Breast cancer is a heterogeneous disease arising from at 

least two distinct epithelial cell populations; therefore, we selected cell lines models of basal-like 

and luminal cells to begin our investigations of the EGFR-pathway. The MCF-7 and ZR-75-1 
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cell lines were derived from breast tumors of luminal origin and have expression of CK8/18 and 

ER. Our previous studies examining cell lines of basal-like origin used immortalized human 

mammary epithelial cell lines (HMECs) [24, 25]; however, these lines are derived from normal 

rather than tumor tissue. Two ER-negative and HER2-non-amplified tumor-derived cell lines, 

SUM149 and SUM102, have been previously shown to express EGFR [18, 44] and show basal-

like expression profiles [45]. The SUM102 and SUM149 lines share many characteristics with 

the basal-like tumors including expression of CK5/6, therefore, we used these two tumor-derived 

lines as in vitro models of basal-like breast cancers. By microarray analysis, EGFR gene 

expression was very low in the luminal cell lines and higher in the basal-like lines.  EGFR 

protein expression by Western blot analysis was detectable in the basal-like lines, but not in the 

luminal lines (data not shown).   

 

Drug sensitivity assays. To assess EGFR inhibitor sensitivity, the six cell lines described above 

were treated for 72h with a range of doses of gefitinib or cetuximab and an MTT assay was used 

to determine IC50 doses (Table 1). In response to gefitinib, the basal-like tumor-derived cell 

lines (SUM149 and SUM102) were two- to 100-fold more sensitive than the luminal lines.  The 

two immortalized HMEC lines were also 33- and 50-fold more sensitive to gefitinib than the 

luminal lines, suggesting that the basal-like cell type as a whole is more sensitive to gefitinib 

versus the luminal cell type. Cetuximab sensitivity was observed in only a single cell line 

(SUM102, IC50=2ug/ml), with IC50 doses for MCF-7, ZR-75-1, SUM149, ME16C2, and HME-

CC not achievable even with cetuximab doses as high as 100ug/ml.  These cell lines were also 

treated with inhibitors that affect targets downstream of EGFR in its pathway including U1026 

(MEK1/2 inhibitor) and LY294002 (PI3K inhibitor).  Most of the cell lines had a similar level of 
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sensitivity to U0126 with the exception that SUM102 was approximately 5-fold more sensitive. 

IC50 doses for LY294002 were similar for most lines with the exception of ME16C and 

SUM149 cells, which were approximately 5-fold more resistant than the other lines. The 

SUM102 line was the only cell line that was sensitive to all four inhibitors and has previously 

been shown to be EGFR-dependent [44], and thus was chosen for further analyses of the EGFR-

pathway.  

 

Drug Combination Analyses. A phase II clinical trial is currently recruiting breast cancer 

patients who are ER-negative, PR-negative, and HER2 non-amplified  (i.e. basal-like patients) to 

assess treatment responses to cetuximab alone or in combination with carboplatin [46]. A second 

phase II trial in an unselected population of metastatic breast cancer patients is also evaluating 

cetuximab in combination with carboplatin and irinotecan [47].  Therefore, we examined the 

combined effects of cetuximab and carboplatin, as well as three additional chemotherapeutics 

(doxorubicin, 5-fluorouracil, and paclitaxel), in SUM102 cells. We also tested the combined 

effects of gefitinib, U0126, and LY294002 with chemotherapeutic agents. Individual drug 

sensitivity (IC50 doses) for each chemotherapeutic was determined for all six cell lines (Table 

2).  The relative sensitivities varied across the cell lines and did not appear to correlate with cell 

type, with the exception that the two basal-like tumor-derived cell lines (SUM102 and SUM149) 

that were at least three-fold more sensitive to carboplatin, and at least two-fold more resistant to 

5-fluorouracil when compared to their “normal” HMEC counterparts or the luminal cell lines.   

 

The interaction of cetuximab with a chemotherapeutic in combination was examined solely in 

the SUM102 line because this was the only cetuximab sensitive line. As a starting point, we 

 12



Hoadley et al. 

treated SUM102 cells for 72h with cetuximab and a chemotherapeutic simultaneously.  

Synergistic interactions were not evident in any combination; all combinations were antagonistic 

as assessed by the method of Chou and Talalay in CalcuSyn [26] (Figure 1). We next analyzed 

the effect of sequential treatment: cells were treated for (a) 72h with cetuximab followed by 72h 

with chemotherapy, (b) 72h with chemotherapy followed by 72h with cetuximab, or (c) with 

cetuximab and chemotherapy simultaneously for 144h. Chemotherapy followed by cetuximab 

was generally more growth inhibitory than cetuximab followed by chemotherapy (Figure 1). The 

one exception was cetuximab with paclitaxel, where all sequence combinations were antagonistic 

(Figure 1). However, this antagonism may result from the high sensitivity to paclitaxel already 

observed in the SUM102 line. Carboplatin followed by cetuximab and the 144h concurrent 

treatments were synergistic even at low doses of both drugs. 5-fluorouracil followed a similar 

trend to that of carboplatin, while in the doxorubicin combinations synergy was only evident at 

doses higher than the IC50 dose for doxorubicin first or the 144h concurrent (Figure 1). Similar 

results were observed for combinations with gefitinib and LY294002 (a PI3K inhibitor) where 

chemotherapy followed by each inhibitor, and the 144h concurrent treatments, were more 

effective than the inhibitor first (data not shown). U0126 (a MEK inhibitor) combinations were 

different with chemotherapy first followed by U0126 being slightly less synergistic than the 

U0126 first or concurrent treatment; however, for U0126, all combinations except doxorubicin 

first, or paclitaxel first, were synergistic (data not shown). 

 

EGFR-pathway gene expression patterns. To identify EGFR-dependent transcriptional 

patterns, we analyzed the gene expression data of the SUM102 cell line treated with EGFR 

inhibitors and then released from this inhibition. Using an unsupervised analysis, we 
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hierarchically clustered all time points from the cetuximab and gefitinib treatment experiments 

and identified over 500 genes that changed in expression at least 4-fold (Figure 2).  Even though 

the two EGFR inhibitors have different mechanisms of inhibition, SUM102 cells treated for 48h 

with gefitinib or cetuximab showed very similar gene expression changes. Intraclass correlation 

(ICC) values between the gefitinib and cetuximab treated samples ranged from 0.627 to 0.934, 

and this level of similarity was also evident in the short dendrogram branches from the cluster 

analysis (Figure 2B).  The post treatment samples (i.e. the inhibitor has been removed) that 

represent the reactivation of the EGFR-pathway were even more similar (ICC within each time 

point ranged from 0.862 to 0.962). A two-class SAM analysis to look for differences between 

gefitinib-post treatment samples versus cetuximab-post treatment samples identified only 58 

significantly different genes with a false discovery rate (FDR) of 5%; thus, from a transcription 

standpoint, gefitinib and cetuximab elicited very similar results. 

 

In response to gefitinib and cetuximab, the SUM102 cell line exhibited decreased expression of 

many proliferation genes (Figure 2).  There was also a large cluster of transcripts that were 

induced by the inhibitors, consisting predominately of hypothetical genes with unknown 

functions.  We were more interested in the genes induced after the removal of the inhibitor as 

this reflects the gene expression patterns associated with de novo activation of the EGFR-

pathway. As early as 4h and 8h after inhibitor removal there was a substantial increase in 

expression for two ligands in the EGFR pathway, amphiregulin and epiregulin. Cyclin A1 was 

also substantially increased (Figure 2C and D). Starting at 4h and continuing through 8h and 24h, 

genes with known roles in G1/S phase such as CDC6, CDC7, TIMELESS, and ORCL6 were 

increased (Figure 2E and Supplemental Figure 1). By 8h and 24h, DNA synthesis and DNA 
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damage checkpoint genes were induced (Figure 2F). Classical gene expression-defined 

proliferation genes including STK6 and Cyclin B1 were highly induced by 24h (Figure 2G).  

There was also a repression of negative regulators of growth such as Growth arrest-specific 1 

and Cyclin G2 (Supplemental Figure 1).   

 

To objectively identify an EGFR-activation signature from the SUM102 cells, a one-class SAM 

analysis was used to identify genes that were statistically induced in the post treatment samples. 

Adjusting the SAM delta value to obtain the largest gene list with less than 5% FDR resulted in a 

gene list that was extremely large (10,017 genes, 4.97% FDR), therefore, the top 500 induced 

genes were selected for further analysis (0.02% FDR). This gene list was used to cluster 248 

UNC breast tumor samples representing all five breast tumor subtypes (Figure 3 and 

Supplemental Figure 2). The list of induced genes from the in vitro experiments were not 

homogenously expressed across the tumor samples, and therefore to study these multiple 

expression patterns in the tumors, we defined “clusters” as any gene set that contained a 

minimum of 20 genes and a Pearson node correlation greater than 0.55. Using this criteria, we 

identified three clusters: Cluster #1 was high in a mix of breast tumor samples that contained all 

five breast cancer subtypes: Luminal B, Luminal A, basal-like, HER2+/ER- and normal-like 

samples (Figure 3C, far right dendrogram branch, 35 genes); Cluster #2 identified a set of tumors 

that was highly enriched for basal-like tumors and contained 58% of all basal-like tumors, 48% 

of all HER2+/ER- tumors and 3 Luminal B tumors (Figure 3D, center dendrogram branch, 27 

genes); Cluster #3 was highly enriched for Luminal A and B tumors, and was also highly 

expressed in most of the HER2+/ER- and basal-like tumors that were also high for Cluster #2 

(Figure 3E, left dendrogram branch– Luminal A and B tumors, and center dendrogram branch – 
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HER2+/ER- and basal tumors, 139 genes).  Thus each gene cluster represents a stereotyped 

EGFR-activation signature that is enriched in a different subset of tumors (full gene lists for each 

cluster are in Supplemental Table 2). Gene Ontology (GO) analysis using EASE was performed 

on each gene cluster but only Cluster #3 had any significant GO terms, which were RNA 

processing, metabolism, binding, splicing, and modification (EASE scores < 0.05). However, 

Cyclin E1 was present within Cluster #2 and is a known prognostic marker for breast cancer 

patients [48]; Cyclin E1 is also associated with basal-like breast cancers [49, 50], which was 

recapitulated here, and known to be regulated by EGFR-signaling [51].  

 

To examine the biological importance of these three gene sets, we individually applied them to a 

true test set of breast tumors (i.e. the NKI295 sample set described in [36, 37]) to determine 

whether they predicted patient outcomes. We first determined a mean expression value of all 

genes within each cluster for each patient. The patients were next rank-ordered based upon their 

mean expression values and divided into either two groups, or three groups, based upon their 

rank-order mean expression values. Kaplan-Meier survival analyses for Relapse-Free Survival 

(RFS) and Overall Survival (OS) were performed and all three clusters were statistically 

significant predictors of outcomes where the high expression always predicted a poor outcome 

(Figure 4 – OS; data not shown for RFS). Using a Cox multivariate analysis, we tested each 

group with the standard clinical parameters and determined that the high expression (top third) of 

Cluster #2 compared to the lowest expression (bottom third) significantly predicted a worse 

outcome for both RFS and OS (HR 2.63, 95% CI 1.44-4.79, p=0.0016 and HR 3.46, 95% CI 

1.58-7.59, p=0.0019, respectively) after controlling for age, ER status, size, grade, and node 

status. Chi-squared analyses were performed to identify relations between tumor subtypes and 
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Clusters #1-3. Consistent with observations from Figure 3, the basal-like, luminal B, and 

HER2+/ER- tumors were associated with the high expression of all three clusters while the 

luminal A and normal-like samples rarely showed high expression (Table 3, p=<0.0001); in 

particular, the basal-like tumors were almost all high for Cluster #2 (89% in top 1/3).  

 

Role of MEK and PI3K in the EGFR-Profile. Activation of EGFR leads to the downstream 

activation of numerous signaling pathways including the MEK/ERK and PIK3/AKT pathways 

[1]. To examine the role of these effectors, we treated the SUM102 cell line with the MEK1/2 

inhibitor U0126 and the PI3K inhibitor LY294002 alone and in combination. Microarray time 

course experiments using inhibitor treated cells followed by inhibitor removal were conducted 

for U0126 and LY294002 using the experimental protocol as were done for cetuximab and 

gefitinib. The observed gene expression profiles for the MEK and the PI3K experiments were 

similar in both gene identity and direction when compared to the EGFR-profile, but gene 

expression changes were typically reduced in magnitude. The MEK and PI3K signatures were 

very similar to each other at the 4h and 8h time points (average ICC = 0.83), but diverged at 24h 

(average ICC = 0.59).  Gene expression signatures of LY294002 and U0126 samples were also 

correlated with gefitinib and cetuximab gene expression signatures at 4h and 8h post treatment 

(LY294002 compared to gefitinib/cetuximab ICC = 0.83, U0126 compared to 

gefitinib/cetuximab ICC = 0.77). The LY294002 and U0126 24h post treatment samples were 

less correlated with gefitinib and cetuximab 24h post samples (LY294002 compared to 

gefitinib/cetuximab ICC = 0.51, U0126 Compared to gefitinib/cetuximab ICC = 0.41). We also 

treated cells with LY294002 and U0126 together to determine if the combined treatment would 

more completely recapitulate the EGFR activation profile; the 24h post combined treatment 
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samples showed a higher correlation value to the gefitinib and cetuximab samples (average ICC 

= 0.73), but still did not account for the entire gene expression pattern of the 24h post cetuximab 

and gefitinib treatments. These results suggest that the EGFR-profile could not be simply 

attributed to either the MEK or PIK3 pathway, but the combination of these two pathways with 

other downstream signaling pathways such as STATs [44], were more representative of the 

EGFR-signature than either pathway alone. 

 

Potential mechanisms for activation of EGFR signaling in vivo.  Activation of the EGFR-

RAS-MEK pathway is known to occur via both ligand dependent and independent mechanisms. 

The empirically derived signatures of Clusters #1-3 are likely to include both. Thus, to 

distinguish between ligand dependent and independent mechanisms, we tested the gene 

expression patterns of the HER family of receptors (EGFR, HER2, HER4), some of their ligands 

(TGFA, EGF, AREG), as well as other pathway components including MEK1, MEK2, PIK3CA, 

PIK3R1, CRYAB, AKT1-3, the RAS proteins (H, K and N), ERK1, ERK2, and the KRAS-

amplicon signature (identified and defined by gene expression in Herschkowitz et al. [52]) for 

their ability to predict patient outcomes, for correlations with tumor subtype (Table 3), and for 

correlations with Clusters #1-3 (Table 4).  In this case, the potential ‘ligand independent’ gene 

list was not empirically defined, but was based on the existing literature for genes implicated as 

being able to activate the EGFR signaling pathway. Gene expression for individual genes was 

rank-ordered and divided into thirds as was done for Clusters #1-3 above.  Each gene was tested 

for its ability to predict outcomes in the UNC 248 tumor data set.  No individual gene listed 

above significantly predicted RFS and OS in both the UNC and NKI data sets.  Associations 

between genes, or with Clusters #1-3, or with subtype were determined by Chi-square analysis 
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and identified many significant associations (Table 3). For example, high HER2 expression, as 

expected, was significantly correlated with the HER2+/ER- subtype and ER expression was 

associated with both luminal subtypes (data not shown). EGFR expression was correlated with 

the basal-like subtype while high HER4 and PIK3R1 expression was associated with the luminal 

A subtype. Many other associations with the basal-like subtype were also evident that included 

the high expression of Clusters #1-3, TGFA, AKT3, CRYAB, MEK1, NRAS and the KRAS-

amplicon signature and KRAS gene (Table 3). Other potentially biologically relevant associations 

included the high expression of Clusters #2 and #3, HRAS, MEK1, and AKT1 with the 

HER2+/ER- subtype, and high expression of Clusters #1-3 and HRAS with the luminal B 

subtype. Thus, even though the Clusters #1-3 were identified using a basal-like tumor derived 

cell line, associations with luminal tumors were identified. 

 

We also tested for associations between the high expression of Clusters #1-3 with the high 

expression (i.e. top 1/3 group) of each of the above-mentioned genes in both the UNC and NKI 

datasets (Table 4). In both datasets, the high expression of MEK2 and HRAS was associated with 

Cluster 1, while the high expression of many other genes correlated with Clusters 2 and 3; of 

note was the high expression of the KRAS-amplicon, HRAS, NRAS, and MEK1 with both 

Clusters #2 and #3, and the high expression of EGFR with only Cluster #2. The association of 

different genes with the three EGFR-activation signatures is likely reflective of the complexity of 

signaling in this pathway in breast cancer. 

 

Lastly, an obvious mechanism for activation of the EGFR-RAS-MEK pathway is the somatic 

mutation of a RAS gene, BRAF, or EGFR itself, which are relatively frequent events in non-small 
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cell lung carcinomas. We performed resequencing analyses on a subset of the breast tumors 

analyzed by microarray for EGFR mutations in exons 19 and 20, which contain the ATP binding 

domain of EGFR, and for the common mutations in HRAS, KRAS and BRAF. No somatic 

sequence variants were detected in 96 tumors including 54 tumors that were over sampled for 

basal-like and HER2+/ER- tumors respectively. 

 

Discussion 

The epidermal growth factor receptor family is of tremendous biological and clinical importance 

for many solid epithelial tumors. In breast cancer patients, the response rate to single agent 

EGFR inhibitors has been low, however, these trials were performed on unselected patient 

populations [53, 54]. The EGFR-pathway has recently become a potential target in the basal-like 

subtype because at least 50% of basal-like tumors express EGFR as assessed by IHC [6]. These 

results lead to the initiation of a clinical trial for ER-negative, PR-negative, and HER2-

nonamplified “triple-negative” (i.e. basal-like) breast cancers where patients will receive 

cetuximab alone versus cetuximab plus carboplatin. Our in vitro analyses show that all four 

basal-like cell lines were more sensitive to EGFR inhibitors compared to luminal cell lines. Only 

a single cell line (SUM102) was sensitive to cetuximab when EGF was present within the media, 

which is the condition that best mimics the in vivo environment [55]. We evaluated the 

combination of cetuximab and various chemotherapeutics in SUM102 cells and observed that the 

combination of cetuximab and carboplatin was highly synergistic at low doses of each drug. 

Even though the short-term co-treatment of cetuximab and carboplatin was antagonistic, 

synergism was observed in the long-term co-treatment suggesting that a combination of a EGFR 

inhibitor and chemotherapeutic might be a good combination against basal-like tumors. 
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Carboplatin, as well as other platinum derivatives, may also be good chemotherapeutic agents for 

basal-like breast cancers due to the implicated function of the BRCA1-pathway in this subtype.  

BRCA1 mutation carriers are predisposed to develop tumors of the basal-like subtype [3, 56, 57].  

In our basal-like tumor-derived cell lines, it has been reported that the SUM149 line has a 

BRCA1 mutation and SUM102 line has barely detectable transcript levels of BRCA1 [58]. From 

a mechanistic standpoint, BRCA1 is required for repair of cisplatin induced DNA damage by 

recruiting RAD51 to the site of damage [59, 60] and BRCA1-deficient cells exhibit increased 

sensitivity to cisplatin compared to wild type cells [61-64]. The combination of an EGFR 

inhibitor and a platinum drug has also been found to be synergistic in several other cell types [14, 

65, 66].  In our experiments, we showed that not only are the basal-like tumor derived cell lines 

the most sensitive to carboplatin and the EGFR inhibitors when applied individually, but also 

that the combination was synergistic.   

 

Given the importance of the EGFR pathway, we identified an EGFR-activation profile and 

examined its interplay with other biological features. In vivo, three distinct expression patterns 

were identified (Figure 3), of which two predicted patient outcomes in both the training and test 

data sets (i.e. Cluster #2 and #3). The greatest value of these activation signatures may be as an 

assay to identify tumors/patients that may benefit from therapeutic interventions in the EGFR-

RAS-MEK pathway.  These signatures may also represent a more dynamic descriptor of pathway 

activity compared to EGFR protein status alone, which does not predict responsiveness to EGFR 

inhibitors [67-69].  Microarray studies of breast cancer patients treated with EGFR inhibitors will 

be needed to address this hypothesis directly. 
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A critical question is what are the molecular events that cause activation of the EGFR-RAS-

MEK pathway, and do these activation events vary with subtype? To address this question, we 

queried our data and found that potential activating events correlated with tumor subtype and 

with the EGFR-pathway activation profiles. These data are summarized in Figure 5 where many 

relationships were identified including previously known associations as well as new 

associations. For the Luminal A subtype, these data suggest that EGFR-RAS-MEK signaling is 

not a relevant therapeutic target and that if anything, the growth inhibitory HER4 receptor may 

be the important HER family member for this subtype (Figure 5A); high expression of HER4 and 

average expression of two of its ligands (HB-EGF and NRG1) were observed, and this subtype 

was also low for all three EGFR-activation signatures.  

 

The Luminal B tumors showed moderate to high expression of the EGFR-activation signatures, 

high HRAS expression, and potentially high MEK2 (Figure 5B). The EGFR/HER2 pathway has 

often been implicated as being at least partially responsible for tamoxifen resistance in ER+ 

patients [53, 70-74]. Our EGFR activation clusters were able to predict outcome differences in 

ER+ and tamoxifen-treated patients in both the UNC and NKI data sets (data not shown); but the 

expression of these clusters in ER+ patients closely parallels the genomic distinction of Luminal 

A versus Luminal B. These results suggest that part of the Luminal A versus Luminal B 

distinction is due to the activation of the EGFR/HER2 pathway in Luminal B tumors. Our results 

are also consistent with the hypothesis of the “non-genomic” effects of ER to activate the HER 

pathway, where membrane bound ER complexes with EGFR and/or HER2 to cause activation of 

the RAS-MEK and p38 pathways [70, 71, 75]. Studies have looked at gefitinib in combination 
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with an aromatase inhibitor in ER+/PgR+ tumors and found no additional benefit [74]. However, 

there may also be other downstream activations occurring such as high HRAS expression. 

Methods to effectively target this pathway in Luminal B tumors are not clear, but our data 

suggests that agents that target RAS or MEK may be worth investigating. 

 

The HER2+/ER- tumors, as expected, showed high expression of HER2 and were also associated 

with high HRAS and MEK1/MEK2 (Figure 5C). High AKT1 levels were also associated with this 

tumor subtype, which has been previously identified [76, 77]. Targeting of the HER pathway in 

the HER2+/ER- tumors involves the administration of trastuzumab; however, given that the 

response rate to trastuzumab-containing therapies is approximately 50%, additional agents are 

needed. Candidates from this study could include the direct or indirect targeting of AKT1 and/or 

MEK1. 

 

The data for basal-like patients suggest that EGFR-RAS-MEK pathway activation is a requisite 

as almost every basal-like tumor analyzed showed the high expression of one or more of the 

EGFR-activation signatures. High expression of many of the genes in the pathway were 

significantly correlated with the basal-like subtype including EGFR, TGFA, MEK1, MEK2, 

AKT3, CRYAB, NRAS and the KRAS-amplicon signature (Figure 5D). The potential mechanisms 

of EGFR pathway activation appears to vary within the basal-like tumors and most lean towards 

ligand-independent mechanisms. One potential mechanism involves CRYAB; Moyano et al. 

showed that the ectopic expression of CRYAB in breast epithelial cells caused them to become 

transformed and EGF-independent through activation of the MEK/ERK pathway [21]. This 

transformed phenotype was reverted by the addition of the MEK inhibitors PD98059 and U0126, 
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while the PIK3 inhibitor LY294002 had little effect. CRYAB may also confer resistance to 

EGFR inhibitors as well as chemotherapy by its anti-apoptotic mechanism, which is the 

inhibition of caspase-3 activation [78, 79]. A second mechanism of activation is via high RAS 

expression; interestingly, the expression of the KRAS-amplicon gene expression signature 

showed stronger associations versus the KRAS gene alone, suggesting that either the amplicon 

signature is a better assay for detecting KRAS activity than the simple expression of KRAS alone, 

or more likely, that additional co-amplified and highly expressed genes synergize with KRAS to 

more potently activate the RAS-MEK pathway. Only a small subset of basal-like tumors showed 

the high expression of EGFR and one of its ligands (typically TGFA) and the low expression of 

CRYAB and KRAS. It is only this subset of basal-like tumors that might be responsive to EGFR 

inhibitors because it is only these tumors that might activate this pathway using a ligand-

dependent mechanism. Examples of individual basal-like tumors that show each of these 

activation profiles is presented in Figure 6.   

 

Conclusions 

The effective targeting of the EGFR-RAS-MEK pathway in basal-like tumors may require 

additional patient stratification based upon the mechanism of activation of the pathway. For 

example, those basal-like patients who show high EGFR and ligand and low CRYAB and KRAS-

amplicon could be candidates for EGFR inhibitors. While those who show high CRYAB and/or 

KRAS-amplicon could be candidates for MEK inhibitors, of which many are in clinical 

development. Alternatively, if MEK inhibitors show good efficacy and low side effects, all 

patients who show activation of the EGFR-RAS-MEK pathway as assessed by Clusters #2 and 

#3 (both of which were associated with high MEK expression-Table 4), may prove to be 
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candidates for these drugs, which would include all basal-like patients, as well as some 

HER2+/ER- and Luminal B patients.  
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Figure 1.  Effects of different combination schedules of cetuximab with chemotherapeutics in 

SUM102 cells.  Cells were treated with four different combination schedules: 1) 72h cetuximab 

followed by 72h chemotherapy, 2) 72h chemotherapy followed by 72h cetuximab, 3) 72h 

concurrent chemotherapy and cetuximab, and 4) 144h concurrent chemotherapy and cetuximab.  

A) Growth inhibitory effects of cetuximab and carboplatin combinations.  B) Combination 

analysis of cetuximab and carboplatin treatments.  C) Growth inhibitory effects of cetuximab and 

paclitaxel combinations.  D) Combination analysis of cetuximab and paclitaxel treatments.  

E) Growth inhibitory effects of cetuximab and 5-fluorouracil combinations. F) Combination 

analysis of cetuximab and 5-fluorouracil treatments. G) Growth inhibitory effects of cetuximab 

and doxorubicin combinations. H) Combination analysis of cetuximab and doxorubicin 

treatments. Combination Index (CI) values below one are synergistic, equal to one are additive, 

and greater than one are antagonistic. 

 

Figure 2. Gene expression patterns for SUM102 cells treated with gefitinib or cetuximab.  

Unsupervised hierarchical cluster analysis was performed on 48h inhibitor treated and 4h, 8h, 

and 24h post 48hr inhibitor treated samples.  A) The complete cluster overview with the colored 

bars indicating the location of the clusters shown in C-G.  B) Close up of the experimental 

sample associated dendrogram. C+D) 4h and 8h post treatment induced genes including the 

EGFR ligands Amphiregulin and Epiregulin. E) Genes involved with the G1/S phase transition 

induced beginning in the 4h post inhibitor and continuing though 24h. F) Genes involved in 

DNA synthesis induced at 8h post inhibitor and continuing through 24h. G) Proliferation genes 

typically observed in tumor derived profiles including STK6 and Cyclin B1. 
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Figure 3. In vivo EGFR-activation profiles and additional genes implicated in the EGFR-RAS-

MEK pathway analyzed using the UNC 248 tumor data set.  A) The top 500 induced genes from 

the SUM102 post treatment experiments were hierarchical clustered using the 248 UNC tumors. 

Colored bars indicate the location of the three clusters in D-E.  B) Tumor associated dendrogram 

color coded according to tumor subtype: Luminal A – dark blue, Luminal B – light blue, true 

normals and normal-like – green, HER2+/ER- - pink, and basal-like – red. C) Cluster #1 that 

identified a mixed group of tumors.  D) Selected genes from the center of Cluster #2 that are 

high in most basal-like tumors.  E) Selected genes from the center of Cluster #3 that are high in 

the luminal tumors. F) Data for genes with suggested roles in EGFR-pathway. G) Data for the 

KRAS-amplicon signature identified in Herschkowitz et al. [52].  

 

Figure 4. Kaplan-Meier survival plots for the 295 NKI tumors/patients using expression from 

the three different in vivo defined EGFR-activation profiles. The average expression value for 

each cluster in each patient was determined and the patients then put into rank-order and divided 

into two equal groups or three equal groups. Overall survival analysis was performed for each 

cluster.  X indicates censored data due loss to follow-up or to information at last checkup. Note 

that Clusters #2 and #3 were also similarly prognostic for the UNC 248 training data set. 

 

Figure 5. EGFR pathway diagram displayed for each breast tumor subtype. The average gene 

expression value for each gene within each subtype is displayed for the EGFR-pathway and for 

the three EGFR-activation profiles using the UNC 248 tumor dataset. Eight genes from the 

middle of each of the three EGFR-activation clusters were used to view expression of the 

clusters in each of the subtypes. A pink node border identifies the genes that showed statistically 
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significant associations with subtype. *Note: the NKI HER4 data spot was used since HER4 was 

not present in the UNC data set. A) Luminal A, B) Luminal B, C) HER2+/ER- and D) Basal-

like. 

 

Figure 6. EGFR pathway diagram displayed for each type of mechanism that could cause 

activation of the EGFR-RAS-MEK pathway in basal-like tumors. A) EGFR-ligand dependent 

activation profile, B) CRYAB activation profile, C) KRAS-amplicon activation profile, D) 

multiple simultaneous activation profiles. 

 

Supplemental Figure 1. Full cluster diagram for the gene expression patterns of SUM102 cells 

treated with gefitinib or cetuximab. 

 

Supplemental Figure 2.  Full cluster diagram for the in vivo EGFR-activation profiles clustered 

on the UNC tumor data set.   

 

Supplemental Table 1. Clinical data associated with each tumor sample. 

 

Supplemental Table 2. Genes from Cluster #1-3 identified from the 500 SUM102 genes 

clustered on the UNC tumor dataset.  
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Table 1.  Estimated IC50 doses of six breast cell lines for the EGFR inhibitors gefitinib, 
cetuximab, the MEK1/2 inhibitor U0126, and the PI3K inhibitor LY294002 

Cell Line Gefitinib 
(µM) 

Cetuximab 
(µg/mL) 

U0126 
(uM) 

LY294002 
(uM) 

ME16C   0.3 (0.02) >100a 19.7 (0.66) 21.2 (0.63) 
HME-CC   0.2 (0.01) >100a 12.7 (0.33)   7.3 (0.17) 
SUM102     0.1 (0.002) 2.3 (0.15)   4.3 (0.20)   3.4 (0.10) 
SUM149   4.7 (0.14) >100a 21.8 (0.80) 18.4 (0.48) 
MCF-7 21.1 (0.29) >100a 17.0 (1.15)   3.9 (0.13) 
ZR-75-1 11.1 (0.12) >100a 25.0 (0.74)   2.4 (0.05) 
Note that the standard errors are presented within () 
aNo achievable IC50 dose with doses up to 100µg/mL 
 
 
 
 
Table 2. Estimated IC50 doses of six breast cell lines treated with chemotherapeutics 

Cell Line 5-Florouracil 
(uM) 

Doxorubicin 
(nM) 

Carboplatin 
(uM) 

Paclitaxel 
(nM) 

ME16C   6.0 (0.29) 32.8 (1.89) 37.5 (0.63) 0.052 (0.004) 
HME-CC   1.1 (0.07) 35.5 (3.26) 48.3 (1.41) 0.025 (0.003) 
SUM102 16.8 (0.82)   5.1 (0.27) 11.7 (0.26) 0.00057 (0.00001) 
SUM149 28.6 (1.33) 45.0 (3.06)   7.7 (0.24)   0.71 (0.006) 
MCF-7   1.2 (0.15) 56.9 (4.26) 89.4 (3.79) 0.23 (0.02) 
ZR-75-1   8.4 (1.06) 26.5 (1.39) 62.6 (1.98) 0.99 (3.34) 
Note that the standard errors are presented within (). 
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Table 3.  Chi-square analysis for association of gene expression with subtypes.  Samples were 
rank ordered into three equal groups and the percentage of each subtype in the highest expression 
group is reported for the NKI patient data set.  
 Basal-like HER2+/ER- Luminal A Luminal B Normal-like p-value 
# tumors 53 35 123 55 29  
Cluster 1a 68% 37% 12% 56% 14% <0.0001 
Cluster 2a 89% 49% 5% 49% 7% <0.0001 
Cluster 3a 77% 51% 11% 47% 0% <0.0001 
       
EGFRa 68% 20% 27% 18% 41% <0.0001 
HER2a 15% 100% 28% 26% 24% <0.0001 
HER4* 9% 3% 50% 38% 31% <0.0001 
       
TGFAb 74% 37% 17% 25% 38% <0.0001 
AREGa 3% 34% 43% 35% 41% <0.0001 
EGF 17% 40% 37% 36% 31% 0.23 
       
CRYABa 70% 11% 33% 4% 48% <0.0001 
       
KRAS 
amplicona 68% 40% 24% 35% 0% <0.0001 

KRAS 
genec 32% 37% 33% 38% 21% 0.36 

HRASd 32% 66% 17% 64% 7% <0.0001 
NRASa 70% 28% 17% 44% 21% <0.0001 
       
PIK3CA 30% 17% 36% 36% 41% 0.28 
PIK3R1a 21% 14% 42% 25% 55% 0.0012 
AKT1a 26% 63% 27% 40% 24% <0.0001 
AKT2* 26% 40% 27% 47% 38% 0.26 
AKT3a 51% 14% 39% 9% 45% <0.0001 
       
MEK1 53% 46% 25% 29% 24% 0.023  
MEK2e 42% 43% 25% 42% 24% 0.068 
ERK1f 30% 26% 31% 42% 41% 0.49 
ERK2g 40% 31% 26% 45% 31% 0.048 
*Note: HER4 could not be assessed in UNC data due to too many missing values; HER3 was not present in the NKI 
data set; AKT2 was not present in the UNC data set 
a associations were also similarly significant in the UNC sample set  
b nominally significant in UNC data (p-value=0.0046) 
c nominally significant association in the UNC data (p-value= 0.0051)  
d nominally significant in the UNC data (p-value = 0.003) 
e nominally significant in the UNC data (p-value = 0.0023) 
f significant in the UNC data (p-value = 0.0003) 
g significant in the UNC data (p-value = <0.0001) 
Bonferroni corrected level of significance α=0.0022 
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Table 4. Associations between Clusters #1-3 and individual genes using the NKI295 sample set. 
Chi-squared analyses were used to identify associations between the high expression of the 
individual EGFR-activation profiles for each cluster (top 1/3) and the expression of individual 
genes categorized as high (top 1/3). The % of tumors with the high expression of each cluster 
and that show the high expression of the individual gene is shown. 
 Cluster 1  Cluster 2  Cluster 3 
 % p-val  % p-val  % p-val 
EGFR 39% 0.1783  43% 0.0091b  38% 0.15 
HER2 26% 0.0017  25% <0.0001c  24% <0.0001a 
HER4* 21% <0.0001  12% <0.0001  18% <0.0001 
         
TGFA 40% 0.0665  48% 0.0002  47% 0.0021 
AREG 22% 0.0007c  23% <0.0001a  28% 0.064f 
EGF 35% 0.1380  25% 0.0691  27% 0.033d 
         
CRYAB 35% 0.3214f  38% 0.0524  38% 0.0013 
         
KRAS amplicon 38% 0.1973e  52% <0.0001c  63% <0.0001a 
KRAS gene 27% 0.0022a  31% 0.8795  36% 0.14e 

HRAS 48% <0.0001c  51% <0.0001  47% 0.0018 
NRAS 45% 0.0362  56% <0.0001c  59% <0.0001a 
         
PIK3ca 22% 0.0032b  27% 0.1415e  30% 0.33e 
PIK3R1 24% 0.0009a  20% <0.0001a  19% <0.0001 
AKT1 41% 0.0112  39% 0.0899  34% 0.36 
AKT2* 40% 0.0519  37% 0.3524  33% 0.94 
AKT3 26% 0.0004  33% 0.1569  35% 0.64f 
         
MEK1 39% 0.0335  47% 0.0032d  48% <0.0001 
MEK2 58% <0.0001a  44% 0.0113d  36% 0.55f 
ERK1 37% 0.0718e  23% 0.0009c  19% <0.0001a 

ERK2 39% 0.0238  37% 0.3457e  36% 0.46e 

*Note: HER4 could not be assessed in UNC data due to too many missing values; HER3 was not present in the NKI 
data set; AKT2 was not present in the UNC dataset. 
a the statistically significant association was also significant in the UNC data set (p<0.0025). 
b the association was nominally significant in the NKI dataset (p<0.05), but significant in the UNC dataset 
(p<0.0025). 
c the association was significant in the NKI dataset (p<0.0025), but nominally significant in the UNC dataset 
(p<0.05). 
d the association was nominally significant in both datasets (p<0.05). 
e the association was significant in UNC dataset (p<0.0025). 
f the association was nominally significant in the UNC dataset (p<0.05). 
Bonferroni corrected level of significance α=0.0025 
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EGFR Signaling Pathways in Breast Cancer 
 
Katherine A. Hoadley and Charles M. Perou 
 
The EGFR pathway is a complex signaling cascade that regulates proliferation, apoptosis, 
differentiation, mobility, and adhesion.  In breast cancer, the gene and protein expression 
of EGFR varies across the subtypes.  EGFR protein is high in 50% of basal-like tumors, 
but is rarely observed in estrogen receptor (ER) positive tumors.  This suggests that there 
might be differences among the breast tumors subtypes in their EGFR signaling patterns. 
 
To examine this hypothesis, we determined the sensitivity to EGFR inhibitors using cell 
line models of basal-like and luminal breast cancers.  The basal-like subtype was more 
sensitive to EGFR inhibitors compared to the luminal subtype. We examined EGFR 
activation signatures by observing gene expression after removal of EGFR inhibitors.  
The top 500 induced genes were then clustered on a human breast tumor data set and 
three distinct clusters of genes were identified.  One cluster was high in a mixed group of 
tumors, a second cluster was high in almost all the basal-like tumors, and a third cluster 
was high in luminal, HER2+/ER-, and basal-like subtype.  The three different clusters 
were applied to an independent test set and high expression of each cluster was found to 
predict poor outcomes. While only 50% of basal-like tumors show high protein 
expression of EGFR, greater than 95% of basal-like tumors showed high expression of at 
least one of the EGFR-activation clusters.  Chi-square analysis found that high expression 
of many genes downstream of EGFR (like KRAS and CRYAB) was correlated with the 
basal-like subtype.  This data suggests that there may be multiple mechanisms 
downstream of EGFR that lead to EGFR-independent signaling.  Inhibition further down 
in the pathway, such as with MEK inhibitors, may be an effective targeted therapy for the 
basal-like subtype. 
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